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INTRODUCTION
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Sensorimotor Continuum For Human Hand 
Function
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[L. A Jones, and S. J Lederman, Human Hand Function, Oxford University Press, 2006]  



Motivations of This Talk
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 Haptics is hard for many reasons. 

 Haptic technology and science are tightly coupled. 

 Knowledge on sensorimotor perception, cognition, and 
neurophysiology is mandatory for the appropriate designs of 
haptic devices and rendering algorithms.  

 Engineers often have troubles in evaluating their haptic 
systems in proper ways.

 These slides are a VERY condensed version taken from the 
course materials of POSTECH EECE 617 Advanced Haptics 
(http://hvr.postech.ac.kr/?page_id=773).   

http://hvr.postech.ac.kr/?page_id=773


Haptic Sensations

 Tactile (Cutaneous) Sensation

 Requires physical contacts between the skin and outer objects

 Mediated by receptors under the skin

 Primary sensations

 Spatial Tactile Sensation: e.g., shape

 Temporal Tactile Sensation: e.g., vibration

 Temperature

 Pain

 Kinesthetic (Proprioceptive) Sensation

 No physical contact is required

 Mediated by various reception systems inside the body

 Primary sensations

 Position, velocity, and acceleration of the body

 Orientation of the body

 Haptic Information = Tactile + Kinesthetic Information
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Passive vs. Active Touch

 The haptic sensory channel is bidirectional.

 Perception + Action

 Good example: Somatosensory Cortex

 Passive Touch

 Haptic perception occurs while motor commands to muscles are 

absent

 Active Touch

 Haptic perception occurs while the user intentionally explores 

objects with body parts.

 Often leads to better perceptual performance
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Haptic Interface

 Device that intervenes a user and a computer for haptic 

interaction

 In general, a haptic interface can sense the user’s motion, 

create haptic stimuli, and transmit it to the user.

 Haptic interaction is symmetric and bidirectional.
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Classification of Haptic Interfaces

 A variety of haptic interfaces have been developed for their 
own purposes, mostly due to the infeasibility of designing a 
“universal” haptic interface.

 Force-feedback (Kinesthetic) Interface

 Can provide force to the user, inducing net movements of the 
user’s body

 Example: A point-contact, 3 Degrees-of-Freedom (DoF), desktop 
force-feedback device

 Tactile Interface 

 Can provide tactile stimuli to the user, without net movements of 
the user’s body or negligible momentums 

 Example: Vibrotactile actuators in mobile devices.
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Why Tactile Rendering? 

 Tactile rendering can deliver various haptic properties, such as

 Pressure

 Texture

 Pulse

 Vibration

 Skin stretch

 Temperature

 Most tactile interfaces are feed-forward, information-presenting 

displays.  
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Tactile Displays

 To date, various kinds of tactile displays have been researched.

 Depending on the purposes, tactile displays differ in skin site, 

contact area, types of tactile stimuli, actuation technology, and 

spatial and temporal resolutions.

 The specifications of tactile displays must be based on relevant 

human perception.

 The performance of tactile displays must be evaluated in terms of 

human perception and usability. 

 Common Actuation Technology

 DC motor (Vibration motor)

 Voice-coil actuator (Linear resonant actuator)

 Piezoelectric actuator

 Electrocutaneous display 

 Tactile pin array

 Temperature display (using Peltier elements)
10



Research Steps for Tactile Rendering

Step Task Example

1 Determine a goal of your application Create button click sensations for mobile 

devices

2 Design proximal stimuli that are 

supposed to be effective for the goal

Design torque and displacement profiles 

similar to real buttons 

3 Find suitable actuation technology and 

implement your application using it

DC Motor, Vibration motor, LRA, Piezo, 

Electricity…

4 Repeat steps 2 and 3 until the best 

solution is found. 

Motor? – Too big for mobile devices

Vibration motor? – Too long lag

LRA? – Fast response, but no 

displacement

Piezo? – Fast response, displacement 

can be rendered depending on design, 

electronics is hard, weak to shock…

Electricity? – Easy to make, but difficult 

to control loading conditions (sweat…)

5 Evaluate your system Can user feel button click sensations?

How faithful are they?

Do they really help typing? 
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Characteristics of Tactile Rendering

 Understanding human tactile perception plays a critical role for 

successful tactile rendering.

 Tactile stimuli that can be rendered are totally dependent upon 

actuation technology.

 Tactile stimuli that can be rendered are often very limited.

 Computational algorithms are usually simple (easy programming). 

 Knowledge on signal I/O, signal analysis, and physical systems is 

mandatory. 

 Real usage scenarios often come with multi-modality (vision and 

audio), cognitive workload (getting a phone call alarm while watching 

DMB), and noisy environment (in a bus or subway).

 In most cases, researchers need to conduct empirical studies for 

haptic perception and usability evaluations designed for their own 

tactile rendering applications.
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Relevant Topics for Evaluation

 Tactile Perception and Cognition

 Psychophysics

 Task Performance

 Cognitive Workload

 Subjective Evaluation

 Perceptual Space

 Affection
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PSYCHOPHYSICAL METHODS
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What is Psychophysics?

 Methodology for investigating relationships between stimuli in 

the physical domain and sensations in the psychological domain

 Central to experimental psychology
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Why Psychophysics for Haptics Research? 

 Common Research Steps
 Determine specifications for a haptics application based on the 

human capability of perception and action

 Design and construct an appropriate haptic interface

 Develop adequate software library including haptic rendering 
algorithms

 Assess the developed system based on perception, task 
performance, subjective assessments, and usability

 Haptic perception is complex; receptors are distributed all over 
the body.

 Haptic perception is relatively less studied compared to visual 
and auditory perception. 

 In many cases, we need to obtain perceptual data on our own.

 For tactile rendering, haptic perception is a key player. 
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Topics to Cover for Psychophysics

 Basic Concepts and Laws

 Classical Psychophysical Methods

 Adaptive Methods

 Magnitude Estimation

 Decision Model for Psychophysics

 Information Theory

 Perceptual Space

 And many more…
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Threshold Level vs. Suprathreshold Level

 Increasing the physical energy of stimulus increases the 

perceived magnitude of sensation.

 Perceptual Threshold

 The smallest amount of stimulus energy required to produce a 

sensation

 Also called Limen (originally German)

 Perceptual Magnitude 

 The magnitude of sensation we feel from a physical stimulus

 Also called perceptual intensity, perceived magnitude, perceived 

intensity, sensation magnitude, sensation intensity … 

 Two Classes of Psychophysical Methods

 Threshold Level: stimulus intensity ≈ threshold

 Suprathreshold Level: stimulus intensity >> threshold
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Psychometric Function

 A central concept of psychophysics 

for the threshold level

 A function from stimulus intensity to 

probability of perceiving the 

stimulus 

 Explicitly models the sensory noise 

of perception process

 Usually a S-shaped ogive

 Modeled as cumulative normal or 

logistic distribution
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Absolute Threshold

 The smallest amount of stimulus energy to produce a sensation that 

can be reliably detected.

 Also called detection threshold

 Often abbreviated as AL (absolute limen) or RL (Reiz Limen)

 50% percentile is mostly widely used, but other higher percentiles 

are also frequently used. 
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Difference Threshold

 The smallest amount of stimulus energy difference to produce a 
sensation that can be reliably discriminated

 Also called discrimination threshold

 Often abbreviated as DL (difference limen or differenz limen)
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Weber’s Law

 Ernst H. Weber (1795 – 1878) 

 A founder of experimental psychology

 Weber’s Law

 Empirical law discovered in weight discrimination

 Difference threshold is proportional to reference stimulus intensity

 JND: Just Noticeable Difference (= DL)

 w: Weber Fraction

 Ir: Reference Stimulus Intensity

 Mostly true, but exceptions also exist. 
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Weber’s Law – Graphical Illustration
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Perceived Magnitude

 Psychophysical Magnitude Function

 A mapping from stimulus physical intensity to perceived intensity

 Two empirical laws exist for the psychophysical magnitude 

function.

 Fechner’s Law

 Proposed by Fechner as a natural extension of Weber’s law

 Only applicable to very limited cases

 Included for historical reasons

 Steven’s Power Law

 One of the best established empirical laws in psychology

 Use this form to obtain a psychophysical magnitude function
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Fechner’s Law – Idea
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* Note that DL and JND are used interchangeably in the most literature. 



Fechner’s Law – Equation

 “Elements of Psychophysics,” 1860.

 P: Perceived magnitude

I: Stimulus intensity

I0: Absolute threshold

 From Weber’s law, 

 Examples where Fechner’s law holds well

 Sound intensity: decibel

 Pitch perception
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Steven’s Power Law

 By Stanley S. Stevens (1906-1973)

 Can be viewed as a general form of Fechner’s Law

 The exponent n depends on stimulus conditions.

 Brightness: 0.5 (Point source)

 Vibration: 0.6 (250 Hz on finger)

 Visual length: 1 (Projected line)

 Electric shock: 3.5 (Current through fingers)

 See http://en.wikipedia.org/wiki/Stevens'_power_law for a 
comprehensive list

 Use the Power law whenever you need to get a magnitude 
function
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Steven’s Power Law - Examples
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How to Measure Thresholds

Accuracy Efficiency

Method of constant stimuli Best Worst

Method of limits Middle Middle

Method of adjustment Worst Best

29

 Classical Psychophysical Methods

 Adaptive Methods

 PEST: Parameter Estimation by Sequential Testing

 Maximum-Likelihood Procedures

 Staircase Procedures



Classical Psychophysical Methods

 Invented by Fechner

 For measuring perceptual thresholds

30

Method Accuracy Efficiency Notes

Method of 

constant 

stimuli

Best Worst

Only method that allows to 

obtain a whole psychometric 

function

Method of 

limits
Middle Middle

Balanced

Can be used for research 

purposes

Method of 

adjustment
Worst Best

Good for pilot experiments or 

clinical trials

Avoid using this for research 

purposes if possible



Method of Constant Stimuli

 Stimuli

 A set of stimulus intensities (5-9) that are evenly spaced

 Procedures

 A stimulus is randomly selected from the stimulus intensity set and 

presented to the participant

 The participant is asked to answer 

 Whether the stimulus was detected (for AL), or

 Whether the test (or comparison) stimulus was greater than the 

reference stimulus (for DL)

 Each stimulus intensity should be repeated in a large number of 

trials (e.g., 100)

 The time necessary for finish an experiment also needs to be 

considered to determine the number of trials. 
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Data Analysis

 Record the proportions of “yes” and plot them against stimulus 

intensity

 Fit a psychometric function to the recorded data
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Psychometric Function Fitting

 Widely-Used Probability Distributions

 The normal distribution

 The logistic distribution

 Fit a function of your choice to measured data and determine 
function parameters (probit analysis for the normal distribution 
or regular regression analysis)
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Finding Thresholds from a Psychophysical 
Function

 Determine the “level” of correctness in perception

 Detection Experiment

 50% detectability (half right and half wrong): AL = mean

 84% detectability: AL = mean + standard deviation 

 x% detectability: AL = x % percentile (stimulus intensity that results 

in the detection probability of x)

 Discrimination Experiment

 PSE = mean

 84% discriminability: DL = standard deviation

 x % discriminability: DL = x % percentile – mean (PSE)
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Remarks

 Pros and Cons

 The method of constant stimuli produces more reliable threshold 

estimates compared to the methods of limits or adjustment.

 It allows to measure a whole psychometric function. 

 It, however, requires a more number of trials and takes longer to 

complete.

 Tips for stimulus design

 Use stimulus intensity levels symmetric to an expected threshold.

 Do not include many stimulus intensities that result in nearly zero 

or perfect perceptibility (only one in each side).

 Use the method of adjustment to find a rough threshold and use it 

to determine stimulus intensities.
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Methods of Limits: Procedures for Measuring 
Absolute Thresholds (1) 

 The method of limits consists of the same number of ascending and 
descending series

 Ascending series

 A series begins with a stimulus intensity well below the threshold.

 A subject is asked to answer if s/he detected the stimulus.

 If the answer is “no”, the stimulus intensity is increased by a small step.

 Steps 2 and 3 are repeated until the subject changes his response from 
“no” to “yes.”

 Descending series

 A series begins with a stimulus intensity well above the threshold.

 A subject is asked to answer if s/he detected the stimulus.

 If the answer is “yes”, the stimulus intensity is decreased by a small step.

 Steps 2 and 3 are repeated until the subject changes his response from 
“yes” to “no.”
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Methods of Limits: Procedures for Measuring 
Absolute Thresholds (2) 

 Cautions

 The order of series (ascending or descending) should be 

randomized.

 It is advised to randomize initial stimulus intensity (of course well 

above or below an expected threshold). Otherwise, participants 

tend to rely on memory.

 Data Analysis

 In each series, a threshold estimate is a mean between two 

stimulus intensities right before and right after a subject changes 

his answers from “no” to “yes” (ascending series) or from “yes” to 

“no” (descending series).

 The AL is the mean of the threshold estimates.
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AL Measurement – Example
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Response Bias

 In a psychophysical experiment,

 Stimulus  Perception  Decision  Response

 Response bias

 The effect of decision, not perception, reflected in the responses of 

a subject

 The tendency of a subject to favor one response over another 

determined by factors other than signal intensities

 Examples

 Tendency to detect “non-present” signals in a detection experiment 

 Paying off a subject

 All classical psychophysical methods can suffer from the 

problem of response bias
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Constant Errors in the Method of Limits

 Errors of Habituation

 Refers to a tendency of a subject developing a habit of repeating 

the same response.

 The subject may continue to change responses a few trials after 

the threshold.

 Results in larger transition points in ascending series and smaller 

transition points in descending series. 

 Errors of Expectation

 Refers to a tendency of a subject anticipating a premature arrival 

at the threshold.

 The subject may change responses a few trials before the 

threshold.

 Results in smaller transition points in ascending series and larger 

transition points in descending series.
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Measuring Difference Threshold – Procedures 

 Ascending series

 A series begins with a test stimulus the intensity of which is well below the 
reference stimulus intensity.

 A subject is asked to answer if the test stimulus felt “less than”, “equal to”, or 
“greater than” the reference stimulus. 

 If the answer is “less than” or “equal to”, the stimulus intensity is increased 
by a small step.

 Steps 2 and 3 are repeated until the subject changes his response from 
“equal to ” to “greater than.”

 Descending series

 A series begins with a test stimulus the intensity of which is much above the 
reference stimulus intensity.

 A subject is asked to answer if the test stimulus felt “less than”, “equal to”, or 
“greater than” the reference stimulus.

 If the answer is “greater than ” or “equal to”, the stimulus intensity is 
decreased by a small step.

 Steps 2 and 3 are repeated until the subject changes his response from 
“equal to” to “less than.”
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Measuring Difference Threshold – Data Analysis

 In each series, two points are recorded.

 Upper limen (Lu): A point where “greater than” responses changes 

to an “equal to” response.

 Lower limen (Ll): A point where “less than” responses changes to 

an “equal to” response.

 Then,
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DL Measurement – Example
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Measuring Difference Threshold – Alternative 

 There are both ascending and descending series.

 In each trial (either in ascending or descending series), the 

subject’s task is to determine whether the test stimulus is 

“greater than” or “less than” the reference. 

 The stopping rule is the same as that of AL measurement.

 Then,

 PSE = the mean of all transition points

 DL = the standard deviation of all transition points
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Summary

 Pros 

 Balanced between accuracy and efficiency.

 Used frequently.

 Cannot estimate a psychometric function.

 Cons

 Two constant errors

 The subject is aware of the direction of stimulus intensity changes, 

which causes response bias.

 Notes

 Use the same number of ascending and descending series and 

randomize their presentation order.

 Also randomize initial stimulus intensity.
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Method of Adjustment – Procedures 

 AL Measurement

 In each trial, a subject is asked to adjust the stimulus intensity so that 
it is just barely detectable.

 AL = the mean of the adjusted intensities.

 DL Measurement

 In each trial, a subject is asked to adjust the test stimulus intensity so 
that it is perceptually identical to the reference stimulus.

 PSE = the mean of the adjusted intensities.

 DL = the standard deviation of the adjusted intensities.

 Pros and Cons

 Most efficient

 Generally considered too inaccurate for research purposes due to the 
too much control of a subject over stimulus intensities

 Can be applied only when stimulus intensity can be adjusted 
continuously or in very small steps.
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Overview of Adaptive Methods

 Motivations

 The classical psychophysical methods tend to use test stimuli from 

which little information on thresholds can be obtained. 

 This makes the classical methods inefficient in terms of 

experiment time.

 Adaptive Methods

 By “adaptive”, we mean that stimulus intensity is not 

predetermined, but calculated during an experimental run based 

on the previous history of stimulus/response pairs. 

 Adaptive methods place stimulus intensities closely on a 

corresponding threshold level and thus require a significantly less 

number of trials than the classical methods. 

 Adaptive methods are particularly useful for estimating a point in a 

psychometric function. 
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Experiment Design for Adaptive Methods

 An adaptive method consists of the following four components.

 Initial stimulus intensity

 Step size

 The difference of stimulus intensity between subsequent trials

 Tracking algorithm

 The process that guides the sequence of stimulus intensities in an 

experimental session

 Stopping rule

 A decision rule for ending the process
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Modern Adaptive Methods

 Categories

 PEST: Parameter Estimation by Sequential Testing

 Maximum-Likelihood Procedures

 Staircase Procedures

 We will focus on the staircase procedures since they are much 

simpler than, yet their performances are comparable to the 

others. 
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Procedures for Staircase Methods

 An experimental run starts with a stimulus intensity well above (or 
sometimes below) a target performance level. 

 Test stimulus intensity is increased after a negative response and 
decreased after a positive response by a step size. 

 Rules for constituting the positive and negative responses are 
designed to meet the specified performance level of a threshold.

 Step sizes are relatively large in the beginning of a session for fast 
convergence, but are soon reduced to small values as the run 
proceeds.

 The session typically terminates after a specified number of 
response reversals.
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Simple Up-Down Method

 Increase stimulus intensity after one incorrect answer, and 

decrease stimulus intensity after one correct answer.

 Estimates the 50% percentile of a psychometric function.

 Estimate = mean of midpoints of 2nd (ascending) series
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Step Size

 In general, step size is gradually decreased during the course 

of an experiment.

 There are many rules for determining step sizes.

 c / n (c: constant and n: number of trials)

 Divide the step size to a half after a fixed number of trials

 Use a large step size in the beginning, and a small step size after 

a predetermined number of reversals
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Transformed Up-Down Method

 Levitt (1971)

 Provides ways to measure, in a psychometric function, 

points other than a 50 % percentile.
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1-Up 1-Down 1-Up 2-Down 1-Up 3-Down 1-Up 4-Down

Up Group – + – , – ++ – , + – , –
+++ –, ++ –, 

+ –, –

Down Group + ++ +++ ++++

P(Down) P(X) [P(X)]2 [P(X)]3 [P(X)]4

Probability 

Converged
0.5 0.707 0.794 0.841



3IFC 1-Up 3-Down Adaptive Staircase Procedure 
(1)

 3 interval force-choice (IFC) or alternative force-choice (AFC)

 A signal is presented in one randomly selected interval among 
three intervals.

 2I vs. 3I

 Two interval design is more common

 Three interval design was shown more robust

 1-Up 3-Down method

 Estimates a 79 % percentile point. 
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3IFC 1-Up 3-Down Adaptive Staircase Procedure 
(2)

 Example rule for step size

 4 dB before first three reversals

 1 dB after that

 Stopping rule

 An experimental run is terminated after 12 reversals occur at the 1 

dB step size.

 A widely used procedure for threshold measurement due to its 

efficiency and robustness.

 Reference: 

 Brisben et. al. (1999)  
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Magnitude Estimation

 So far, we have focused on sensory perception in the 

threshold level.

 The points where a percept can occur (i.e., detection and 

difference thresholds) received main attention.

 The output of the perception process is essentially binary (i.e., can 

feel it/cannot feel it), although it was formulated in the probabilistic 

framework. 

 We now move to how to explain the perception process in the 

supra-threshold level

 The output of the perception process (perceived intensity) varies 

continuously with respect to the continuous change of the input 

(stimulus intensity).

 A central concept is a psychophysical magnitude function. 
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Hypothetical One-Dimensional Psychophysical 
Magnitude Function
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Stimulus Intensity

Perceived Intensity

Detection Threshold

The actual function shape follows Steven’s power law. 



Measurement Scales

 Purpose

 To represent the different degrees of correspondence between the 

number system and the property of objects or events.

 Four Common Measurement Scales

 Nominal Scale: Identity

 Ordinal Scale: Order

 Interval Scale: Interval

 Ratio Scale: Origin 

 Nominal Scale ⊂ Ordinal Scale ⊂ Interval Scale ⊂ Ratio Scale
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Nominal Scale and Ordinal Scale

 Nominal Scale

 Used to classify or identify objects.

 Example: Back numbers of soccer players

 Numbers in a nominal scale only label objects and do not have 
any quantitative information.

 Therefore, a nominal scale cannot provide a means of 
measurement. 

 Ordinal Scale

 A set of measurements in which the amount of a property of 
objects or events can be ranked (greater-than or less-than relation)

 Example: Ranks in the heights of five soccer players. 

 The numerical differences of the property amounts between ranks 
are not available. 

 An ordinal scale simply provides an order of objects or events. 
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Interval Scale

 Scale values represent differences or distances between the 

amounts of property. 

 Example

 Temperature scale

 The difference between 20° and 40° is the same to that between 

60° and 80°.

 The difference between 20° and 40° is twice larger than that 

between 60° and 70°. 

 The differences between numbers, as well as their ordinal 

relation, has meanings. 
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Ratio Scale

 A ratio scale has the properties of order and distance, and also 

has a natural origin to represent zero amount of a property.

 Example

 Temperature in Centigrade/Fahrenheit: Interval scale

 Temperature in Kelvin: Ratio scale (0 K represent the absolute 

state in which no heat exists)

 A ratio scale is most useful and highly desirable measurement 

system. 

 Therefore, many psychophysical scaling techniques were 

designed to construct ratio scales for sensory attributes.
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Psychophysical Scales

 There are mainly three kinds of methods for constructing and 
validating scales of sensory attributes.

 Discrimination Scales (Confusion Scales)

 Can provide an interval scale

 Based on indirect scaling procedures in which sensory magnitudes 
of stimuli are inferred from measures of stimulus discriminability.

 Partition Scales

 Can provide an interval scale

 Uses direct scaling procedures in which the participant must make 
direct judgments of psychological differences among stimuli.

 Ratio Scales 

 Can provide a ratio scale

 Relies on the ability of the participant to make direct judgments of 
the ratio relationships between the magnitudes of sensations.
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Psychophysical Ratio Scaling

 Methods for constructing ratio scales of sensations have been 
extensively studied in the past 35 years.

 Ratio Scaling Methods

 Ratio Production

 Ratio Estimation

 Magnitude Estimation

 Magnitude Production

 Absolute Magnitude Estimation

 Magnitude estimation is that the most widely used method for 
psychophysical ratio scaling
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Ratio Production and Estimation

 Ratio Production

 The participant is asked to adjust a stimulus intensity so that the 
perceived intensity of the final stimulus is a fraction (e.g., half) of 
the perceived intensity of the standard stimulus.

 Ratio Estimation

 The participant’s task is to tell the estimated ratio between the 
perceived intensities of two stimuli.

 Ratio production and ratio estimation were actively used in the 
past.

 However, they are no longer used frequently, because they 
have been found to be particularly sensitive to stimulus 
context effects (contrast effect, sequential effect – assimilation  
bias, and stimulus range effect – stimulus-range equalizing 
bias ). 
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Magnitude Estimation with Modulus

 The subject is presented with a standard stimulus, and 

instructed that the sensation it produces has a certain 

numerical value (modulus), e.g., 10.

 On subsequent trials, other stimuli are presented, and the 

subject assigns numbers to their sensations relative to the 

value of the modulus.

 The participant is instructed to make his judgment reflect how 

many times greater one sensation is than another (the ratio 

between the two sensations).
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Magnitude Estimation without Modulus

 No standard modulus is defined by the experimenter.

 A subject can define his own modulus in the first trial and use 

it as a modulus in the subsequent trials. 

 Other procedures are the same to those of magnitude 

estimation with modulus.

 Magnitude estimation without modulus is used more frequently.

 In no modulus design, the data of different subjects are 

combined using the geometric mean. 
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Magnitude Production

 An inverse of magnitude estimation.

 The experimenter tells the numerical value of some sensory 

magnitude to the subject, and the subject adjusts stimulus 

intensity to produce the number.

 Magnitude production can be used to confirm the soundness 

of magnitude estimation.

 Using magnitude estimation and production together can offset 

any systematic errors inherent in either method. 
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Method of Numerical Magnitude Balance

 Regression bias

 A regression of the subject’s judgments toward the mean of his 
judgments. 

 The subject tends to be reluctant to make radical responses.

 In magnitude estimation, the subject answers perceived 
intensity higher than its true value for low stimulus intensities, 
and lower for high stimulus intensities. This decreases the 
slope of the psychophysical magnitude function.

 In magnitude production, the subjects adjusts stimulus 
intensity higher than its true value in low perceived intensities, 
and lower for high perceived intensities. This increases the 
slope of the psychophysical magnitude function.

 Using the two method together and taking the geometric 
means can be an effective way to cancel off the effects of 
regression bias.  
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Example of Regression Bias
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Absolute Magnitude Estimation

 An absolute scale is a restricted case of ratio scales in which 

scale values cannot be transformed in any way. 

 There has been ample evidence that we use an absolute scale 

for sensory magnitudes, which may have been fixed at an 

early age.

 If the relation between a standard stimulus and a modulus 

arbitrarily assigned by the experimenter is different from what 

a subject would assign in absolute scaling, the use of the 

standard stimulus may bias the resulting psychophysical scale. 

 At present, the method of absolute magnitude estimation is 

recommended to prevent the potential biasing effects of a 

standard stimulus. 
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Subject Instructions in Absolute Magnitude 
Estimation 

 In this experiment, we would like to find out how intense various 
stimuli appear to you. For this purpose, I am going to present a 
series of stimuli to you once at a time. Your task will be to assign a 
number to every stimulus in such a way that your impression of how 
large the number is matches your impression of how intense the 
stimulus is. We all have impressions of how large various numbers 
are, and impression of how intense various stimuli are. I would like 
you to assign a number to each stimulus so that your impression of 
the size of the number matches your impression of the intensity of 
the stimulus. 

 You may use any positive number that appears appropriate to you –
whole numbers, decimals, or fractions. Do not worry about running 
out of numbers – there will always be a smaller number than the 
smallest you use and a larger on than the largest you use. Do not 
worry about numbers you assigned to preceding stimuli. Do you 
have any questions?

71



Detection Theory

 A more modern approach

 Based on the signal detection theory in communication

 Provides means to separate the decision process (e.g., 

response bias) from perception process

 Models the human as a noisy communication channel

 Uses the metrics of sensitivity index (d’) and response bias (c)
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Decision Model for One Stimulus

 S: Stimulus

 X: Random variable for perceived magnitude

 p(x|S): Conditional probability density function for perceived 

magnitude of x to occur as a response of stimulus S

 M: Mean of p(x|S) 
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Decision Model for Two Stimuli
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xM1 M2

p(x|S1) p(x|S2)

R1 R2

k

x < k  Subject response = R1

x ≥ k  Subject response = R2



Sensitivity Index and Response Bias

 Sensitivity Index d’

 A measure of discriminability

 Normalized distance between the two means

 Note that d’ reflects pure perception performance, without the 
effect of the decision process represented by k. 

 Response Bias c

 A representation of the decision rule

 Normalized distance between k and the average of the two means

 Response bias c can change independently from d’. 
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Definitions of Four Probabilities

 Consider that S1 = signal absent and S2 = signal present.

 Hit Rate: P(R2|S2)                                    Miss Rate: P(R1|S2)

 False Alarm Rate: P(R2|S1)      Correct Rejection Rate: P(R1|S1)
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Procedures for 1I 2AFC Experiment

 One interval, two alternatives, forced-choice 

 The same framework for both detection and discrimination

 Prepare two stimuli: S1 and S2

 S1 =“quieter tone”, S2 =“louder tone”

 S1 =“softer spring”, S2 =“harder spring”

 S1 =“noise”, S2 =“signal embedded in noise” 

 On each trial, Si is presented with a probability of P(Si), where 
P(S1) + P(S2)=1.

 The subject is asked to feel the signal and to answer which 
signal s/he felt, i.e., only two answers (R1 and R2) are allowed.

 Trial-by-trial correct answer feedback is optional.
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Data Analysis: Confusion Matrix

 Compile the data of each subject in a 2x2 matrix.

 Hit Rate: H                                      False Alarm Rate: F

 From H and F, we can estimate d’ and c. 
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Examples of Confusion Matrix

 For each confusion matrix, think over their underlying 

probability distributions.
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R1 R2

S1 48 2

S2 1 49 R1 R2

S1 5 45

S2 1 49

R1 R2

S1 2 48

S2 49 1



Data Analysis: Computing d’ and c (1)

 Compute H and F from a confusion matrix.

 Calculate z(H) and z(F).

 Then,

 Proof: 

80

)()(' FzHzd 
2

)()( FzHz
c




).|(

Then, . of  transforma Use

symmetry. by the )|2()|(

2
2

2

222

S
kM

ZPH

MX
Z

SkMXPSkXPH















Data Analysis: Computing d’ and c (2)

 It follows that d’ and c can be estimated from experimentally 

obtained hit and false alarm rates. 
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Response Bias Revisited

 Response bias (c thus k) can be systematically controlled by 

changing some factors, such as:

 Probability of presenting S1 (or S2)

 Increasing P(S2) in a detection experiment increases the subject’s 

expectation of signal appearance, thus decreasing k.  

 Payoff for hits and misses

 Rewarding hits and penalizing misses encourage the subject to answer 

“yes”, thereby decreasing k.

 This problem was a primary motivation for the birth of the 

decision model. 
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More Topics on Decision Theory
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 ROC (Receiver Operating Characteristics)

 Relation between d’ and a perceptual threshold

 Decision theory for multiple alternatives (stimuli)



Information Theory

 Proposed by Claude E. Shannon (the father of information 
theory; 1916-2001)

 Can we count the amount of information?

 Foundations for all modern communication theories 

 What is communication?

 Phones

 Internet

 Speech

 Perception

 Any form of information flow can be regarded as communication
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Information Theory Applied to Perception

 Motivations

 Peripheral to central limitations

 Miller’s “magic number 7 ± 2”

 Humans as noisy communication channels

 Advantages

 Allows to quantify our perceptual capacity

 Context-free measure of information flow
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Information and Uncertainty

 Gaining information = Reducing uncertainty

 Example of “measuring” uncertainty – Binary Question

 1 0 question

 1 2 1 question

 1 2 3 4 2 questions

 1 2 3 4 5 6 7 8 3 questions

 An intuitive measure of uncertainty

where k is the number of equally-likely outcomes
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Definition of Uncertainty

 Uncertainty of outcomes with uniform probability distribution

 k: # of alternatives

 Given a random variable X, the uncertainty of a given outcome 

Xi is

 The average uncertainty of a random variable X is

 Unit: bits
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Absolute Identification (AI) Experiment

 One-interval experiment

 Stimuli: Si, i ∈[1, k] (k > 2)

 Responses: Rj, j ∈[1, k]

 One-to-one mapping (Si⇔Ri)

 On each trial, one of the stimuli Si is presented with an a priori 

probability of P(Si)

 Subject makes a response with Rj

 Trial-by-trial correct-answer feedback is optional
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S-R Confusion Matrix (e.g., k=5)
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IS and IR

 IS (Information in Stimulus)

 IS is the average uncertainty in stimulus

 If all stimuli are equally likely, then

 IR (Information in Response)

 IR is the average uncertainty in response
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IT (Information Transfer)

 Also called “mutual information”

 IT = reduction in uncertainty

 For a particular (Si, Rj) pair:

 U(Si) before: 

 Assuming that P(Si) is constant throughout the exp.

 U(Si) after:

 Average IT = 

 IT: the degree of correlation between S’s and R’s
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Randomization with Replacement

 Imagine that you have k containers for the k stimulus 

alternatives

 The i-th container has a fixed number of copies (ni, 

proportional to P(Si)) of the i-th stimulus

 On each trial, one of the Σ ni (i=1, …, k) stimuli is selected to 

be presented to the subject

 That stimulus is immediately replaced in its corresponding 

container

 Then, the a priori probability for Si (i=1, …, k) remains the 

same for all trials

 The stimulus uncertainty remains the same on all trials
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Randomization without Replacement

 Imagine that you have k containers for the k stimulus 
alternatives

 The i-th container has a fixed number of copies (ni, 
proportional to P(Si) ) of the i-thstimulus

 On each trial, one of the Σni (i=1, …, k) stimuli was selected to 
be presented to the subject

 That stimulus is NOT replaced in its corresponding container

 Then, the a priori probability for Si may change from trial to 
trial

 The stimulus uncertainty IS may change from trial to trial

 On the last trial, the subject knows exactly what stimulus to 
expect (whichever stimulus is the last one left in a container)
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More on Randomization

 We prefer the method of “randomization with replacement” 

because 

 It ensures constant IS for each trial

 It makes data analysis easier

 With the method of “randomization with replacement,” equal a 

priori probability no longer guarantees equal number of 

occurrences for all stimulus alternatives.

 Note that frequency of occurrence ≠ probability

 The advantage of “randomization without replacement” is that 

the experimenter controls the exact number of times each 

stimulus alternatives is presented.
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Example S-R Confusion Matrix for Randomization 
with Replacement
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Estimation of IT – ITest

 Average information transfer:

 Its maximum-likelihood estimate:

 Interpretation of       or         (compare with         )
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Percent-correct scores and ITest
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Maximum Information Transmission

 Mathematically, IT≤IS.

 Intuitively, if the input and output are perfectly correlated, then 

IT= IS(= IR).

 Assume that there exists a maximum information transmission

 For small values of IS, IT= IS.

 As IS increases, IT= constant regardless of the value of IS.

 This maximum IT is accepted as the channel capacity.
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Channel Capacity – Example 
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The Magic Number 7±2

 The “magic number” is derived from an IT range of 2.3 –3.2 

bits

 The “magic number” summarizes the typical channel capacity 

for uni-dimensional stimuli

 Uni-dimensional stimuli

 Only one physical variables (target) is manipulated to form the 

stimulus set

 Other physical variables (background) are either held constant or 

randomized

 How “Magic” is the Magic Number?

 The “Magic Number” does NOT apply to 

 Absolute pitch (over-learnt stimuli)

 Human face recognition (Multi-dimensional stimuli)
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Perceptual Space

 An abstract, mathematical space that visualizes the structure 

of perception

 Actively used in perception and HCI research

 Procedures of perceptual space estimation

 Obtain dissimilarity data between stimuli

 Apply Multi-Dimensional Scaling (MDS) to the data

 Interpret the results of MDS based on the experimenter’s intuition 

and additional analysis
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Perceptual Space – Haptic Texture
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Perceptual Dimensions: Soft-Hard, Smooth-Rough, Slippery-Sticky



Dissimilarity Measurement

 Prepare a large number of stimuli that vary in the physical 
parameters of your interest

 One of two common procedures for dissimilarity measurement.

 Direct estimation of dissimilarity 

 Participants provide direct estimations of pairwise dissimilarity 
between two stimuli

 Provides interval-scale data

 Useful for a relatively small number of stimuli

 Indirect estimation of dissimilarity from similarity

 Participants sort similar stimuli into groups (clusters)

 Similarity scores are computed and then transformed to 
dissimilarity scores

 Provides data between ordinal and interval scales

 Useful for a large number of stimuli 
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Multi-Dimensional Scaling (MDS)

 A statistical method that estimates the dimension and 
positions of a set of points from the pairwise distances 
between the points. 

 Direct problem

 Given X = {xi}, find d( xi, xj ) where d() is a distance metric.

 Inverse problem

 Given {d( xi, xj )}, find {xi}.

 MDS solves the inverse problem iteratively  

 Increase the dimension of xi

 Estimate the positions of {xi}

 Evaluate the goodness of fit. 

 If the goodness of fit is not good enough, repeat from the first step.
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Classification of MDS

 By the type of dissimilarity data

 Metric: Interval and ratio scale data

 Non-metric: Nominal and ordinal scale data

 By the number of similarity matrices and the nature of MDS model

 Classical MDS: One similarity matrix and unweighted model

 Replicated MDS: Several similarity matrices and unweighted model

 Weighted MDS (= INDSCAL, Individual Difference Scaling)

Several similarity matrices and weighted model
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Classical Metric MDS

 Input

 Input matrix is square and symmetric

 Input data is metric

 Model

 Transformation function f is assumed to be linear

 Software tool

 Use CMDSCALE function in MATLAB

 Advantage

 Relatively precise solution and little computation time

 Limitations

 Only one symmetric matrix is allowed

 Input data type restriction
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Classical Non-Metric MDS

 Input

 Input matrix is square and symmetric

 Input data is non-metric

 Model

 Transformation function f is assumed to be monotonic

 Software tool

 Use MDSCALE in MATLAB

 Advantage

 High applicability

 Limitations

 Only one symmetric matrix is allowed

 A risk of suboptimal solution exists.
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INDSCAL MDS

 Input

 Input matrix is square and symmetric

 input data is metric

 Model

 Transformation function f is assumed to be multiple linear functions for 
each subject

 Usage

 Use ALSCAL MDS package in SPSS

 Advantage

 The model accounts for systematic differences between subjects

 Solution is unique, unrotatable -> often directly interpretable

 Limitations

 Symmetry of the input matrices

 Metric data
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Determining the Number of Perceptual 
Dimensions

 Step 1: Perform MDS with # of dimensions = 1

 Step 2: Check out the goodness of fit using S-stress, stress, 

and 1-R2

 Step 3: If the fitting is good, stop here. If no, go back to step 1 

with # of dimensions increased by 1.

 Example of stress: Kruskal’s stress

 dij: true distances between samples

 δij: estimated distances by MDS

 n: number of samples

109

 
2

1

1 1

2

1 1

2


























 

 

n

i

n

j

ij

n

i

n

j

ijij

d

d

S





Example of Goodness of Fitting

 1-R2 plot from Hollins et al. 

 What value can use for the best number of dimensions?
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Case Study 1 – Direct Dissimilarity Estimation

 Reference

 I. Hwang and S. Choi, “Perceptual Space and Adjective Rating of 
Sinusoidal Vibration Perceived via Mobile Device,” In Proceedings 
of the Haptics Symposium (HS), pp. 1-8, 2010

 Theme

 Perceptual space of vibration transmitted to the hand holding a 
mobile device

 Approach

 Obtain a perceptual space by direct dissimilarity rating followed by 
MDS

 Find a set of adjectives that can explain the percept distribution 
and map them to the perceptual space
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Case Study 1: Perceptual Space – Methods 

 Stimulus Design

 Frequencies: 40, 80, 100, 120, 150, 

200, and 250 Hz

 Amplitudes: 30 and 40 dB SL

 Four repetitions with 105 pairs

 Signal: 1s vibration – 1s rest –

1s vibration

 Participants

 Ten males (6 – right handed)

 Average 23 years old (20 – 28)

 Measurement

 Absolute magnitude estimation 

 0 ~ 100 ratings on each vibration stimulus (0: identical, 100: Completely 

Different)
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Case Study 1: Perceptual Space – Dissimilarity 
Matrix

 Dissimilarity Matrix

 One square, symmetric matrix

 Euclidean distance was used as a distance metric

 Goodness-of-fit was measured by Kruskal’s stress

 Number of perceptual dimensions = 2
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Case Study 1: Perceptual Space – Result
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Case Study 1: Perceptual Space – Discussion

 Qualitative sensations of vibration [Tan, 1996]

 Slow kinesthetic motion: 1 – 3 Hz

 Rough motion or fluttering: 10 – 70 Hz

 Smooth vibration: 100 – 300 Hz

 Difference in the perception channel

 Most sensations are achieved from the PC channel when 

frequency > 100 Hz.

 When frequency < 100 Hz, perception through the NP1 channel 

affects on the feeling of vibration.

 At higher amplitudes, the NP1 channel is activated more with 

increased effects on the sensations.
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Case Study 1: Adjective Rating – Adjective 
Collection

 Stimulus Design

 Frequencies: 40, 80, 150, and 250 Hz

 Amplitudes: perceived magnitude level 11, approximately corresponds to 40 

dB SL

 Duration: 1 s

 Participants

 Nine males, native Koreans

 Methods

 Adjectives were found on web pages

and Korean dictionary

 Multiple-choice questionnaire and 

free answers
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Case Study 1: Adjective Rating – Methods

 Stimulus Design

 Frequencies: 40, 80, 100, 120, 150, 200,

and 250 Hz

 Amplitudes: perceived magnitude level 11,

approximately corresponds to 40 dB SL

 Duration: 1 s

 Participants

 Seven males and three females, 

native Koreans

 Measurement

 Ratings on each adjective for each 

vibration stimulus
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Case Study 1: Adjective Rating – Raw Data
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Case Study 1: Adjective Rating – Mapped into 
Perceptual Space

 The dissimilarity matrix for 40 dB SL amplitude was reprocessed by 

and, and the adjective pairs were projected into the perceptual space 

using multiple linear regression
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Case Study 1: Adjective Rating – Good Adjectives
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Case Study 2: Cluster Sorting 

 Reference

 Pasquero, J.; Luk, J. amd Little, S. & Maclean, K., “Perceptual 

Analysis of Haptic Icons: An Investigation into the Validity of 

Cluster Sorted MDS,” In Proceedings of the Symposium on Haptic 

Interfaces for Virtual Environment and Teleoperator Systems, pp. 

437-444, 2006. 

 Theme

 Perceptual space of vibration generated by a lateral skin-stretch 

tactile pin array

 Approach

 Obtain a perceptual space by cluster sorting followed by MDS

 A nice set of discussions for the validity analysis of cluster sorting 

method
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Case Study 2: Cluster-Sorting Method 

 Pair-wise Comparison Method

 Long experiment time

 10 stimuli -> 45 comparisons, 20 stimuli -> 190 comparisons, ...

 Lack of consistency

 Cluster-Sorting Method

 To shorten the experiment time while preserves the characteristics 

of perceived similarity/dissimilarity

 Lawrence M. Ward developed a cluster-sorting method (1977)

 MacLean et al. applied similar techniques to haptic icon design 

(many papers)
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Case Study 2: UI for Cluster-Sorting Method 
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Case Study 2: Methods (1)

 Apparatus

 Pin array for thumb

 “Skin-stretch” type

 Stimulus Design

 Waveform: TRI, ROLL, SAW, BUMP,

and EDGE

 Amplitude: full scale and half scale

 Duration: differs for each stimulus

 Participants

 Ten participants (seven males)
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Case Study 2: Methods (2)

 Clusters

 Five clusters with 3, 6, 9, 12, and 15

 User select the first cluster size

 Each sorting box in clusters was assigned a name by four 
categories (duration, magnitude, multiplicity, and description)

 Similarity Computation

 If a pair of stimuli is sorted in a cluster with size n, this pair 
receives a similarity score n.

 The user-selected cluster score is adjusted to the closet number in 
{3, 6, 9, 12, 15}

 The similarity score of this pair is accumulated over all the clusters. 

 Then the score is linearly scaled to obtain a dissimilarity score 
between 0 (always grouped together) and 1000 (never grouped 
together)
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Case Study 2: Perceptual Space

 Dissimilarity matrix was analyzed by using 2D MDS analysis tool 

SPSSTM 13.0 

 3-dimensional MDS plot does not reveal any extra structural 

information
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Case Study 2: Discussion (1)

 Are the data obtained by cluster sorting metric or non-metric?

 Non-metric MDS showed better results.

 There were other evidence where metric MDS showed good 
results for cluster sorting.

 Data from cluster sorting is clearly ordinal, but you need to careful 
to interpret them as interval data. 

 The dissimilarity matrix obtained by cluster sorting is restricted.

 In direct estimation of dissimilarity, each element in a dissimilarity 
matrix can be any number and independent from other elements.

 In cluster sorting, however,

 Each element obtained by cluster sorting can be dependent on 
other elements.

 The resolution of dissimilarity scores is finite. 

 Therefore, the “power” of MDS is less than that of direct dissimilarity 
estimation, making it difficult to revel “fine” differences. 
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Case Study 2: Discussion (2)

 You often need additional MDS analysis using sub-dissimilarity 

matrices to see less dominant stimulus distinctions. 
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TASK PERFORMANCE
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Task Performance

 More application oriented

 Given a task, its performance is evaluated using several 

metrics

 Task success rate

 Accuracy

 Error rate

 Time on task

 Task completion time

 Efficiency

 Learnability

 Widely used

 The values of performance metrics depend on the task context 

significantly. 
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Issues in Designing Tactile Signals
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 Discrimination

 Can we feel the differences between haptic signals?

 Pairwise discrimination and MDS are frequently used for 

discriminability evaluation. 

 Identification

 Can we tell the identity, i.e., the name of a haptic signal? 

 We can assess the identifiability of haptic signals, either with or 

without a learning phase. 

 Without a learning phase: Signal-identity table is given to participants. 

For example, signals can be presented graphically with their IDs. Do 

not enforce the participants to use their memory. 

 With a learning phase: In this case, the performance is affected by both 

signal identifiability and learnability of associated meanings.



Learning Strategy (1)

 What is an effective way for users to learn stimulus-meaning 

associations?

 Designing an effective learning strategy is also important for 

abstract message delivery.

 Most research used neutral learning procedures to see the 

learnability between stimuli and meanings, not affected by the 

learning procedures.

 More sophisticated learning procedures, e.g., those using 

reinforcement learning (include rewards that are expected to 

improve desired behaviors) or multimodal signals (reminding 

the stimuli-meaning associations) can accelerate the learning, 

and can be very important in actual deployments. 
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Learning Strategy (2)

 Evaluation of Learnability

 Limit the participant’s effort spent for training (e.g., time or number 

of repetitions). Then measure the accuracy of learning after the 

training.  

 Repeat training until the performance of stimuli-meaning 

association reaches a predefined level. Then, measure the effort 

(time or the number of repetitions) required to reach the goal 

performance. 

 Design of learning procedures is better to comply with the context 

of applications. 

133



Retention (Recall) Test

 It is also important how well users can retain the learned 
memory of stimuli-meaning associations.

 For this, we often need to conduct retention tests.

 Two standard retention tests

 Immediate retention tests

 Test right after learning is completed.

 Other aids helping learning must be removed in retention tests. In this 
context, tests during or after learning to evaluate learning performance 
and immediate retention tests may need to be separate. 

 Delayed retention tests

 Tests some time later after learning completion. 

 Depending on applications, the performance of delayed retention tests 
should be regarded as the ultimate performance. 

 An appropriate time gap between learning and delayed retention tests 
is contingent upon the context of applications. 
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Field Test

 When we are satisfied with the performance of tactile display 

system, the last and most difficult step is to deploy the system 

to a larger population and observe the user responses for a 

long time.

 This step determines the true viability of your systems. 

 However, field tests are difficult, in terms of money, time, and 

researchers’ efforts, especially for university researchers, and 

are mostly neglected.

 Still very needed step for industrial adoption.    
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Considerations for Participants

 In designing experiments for tactile display systems, we need to be very 
careful of selection of participants.

 Experiments mostly depending on haptic perception

 A basic assumption is that our perceptual ability is more or less the same, 
except for a few factors such as age. 

 In limited cases, gender affects the perceptual data (e.g., the rate of growth in 
sensation magnitude of vibrotactile stimulus)

 Experiments including motor and cognitive factors

 Related participant ability are individual-specific, thus participants need to be 
carefully controlled. 

 Factors to consider

 Age, gender, sensory impairments, education (general and some specific skills), 
culture (e.g., applicable only in Korea?), experience (to similar tasks and 
experiments), and so on.

 Every other participant factor that may affect the performance

 Cases studies with a limited number of participants who are rare and difficult 
to recruit are often considered as valuable as well (e.g, with visually impaired 
participants). 
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SUBJECTIVE EVALUATION
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Subjective Evaluation

 Asks the participant to rate a certain metric in numbers within 

a range

 Examples

 Fun, Easiness to use, Difficulty to learn …

 Mainly used as an accompanying evaluation in addition to  

quantitative assessments

 Mostly uses Likert scales
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ADVANCED TOPICS

139



Mental Workload

 NASA TLX (Task Load Index) 

 A multidimensional scale consisting of 6 dimensions

 Mental demand (MD): Related to perceptual activity such as 

thinking, deciding, calculating, remembering, looking, and 

searching

 Physical demand (PD): Related to physical activity such as 

pushing, pulling, turning, controlling, and activating

 Temporal demand (TD): Related to time pressure

 Performance (OP; Own Performance): Related to personal goal 

accomplishment

 Effort (EF): Related to energy expenditure in accomplishing the 

level of performance

 Frustration (FR): Related to the feelings of insecurity, 

discouragement, irritation, stress, and annoyance
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Affection

 Cognitive Valence Theory

 Theoretical framework that describes and explains the process of 

intimacy exchange within a dyad relationship

 Uses subjective or biometric measurements
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